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Investigation of Lidar Data 
�for Autonomous Driving  
with an Electric Bus

Electric mobility and automated driving are merging together.  

Bertrandt investigates the measurement data of a laser scanner  

(lidar technology), which recorded the environment of an electric  

city bus 4-km route through Regensburg (Germany). On the basis  

of these data, two methods of object detection and classification  

were examined. One of the challenges was the low vertical resolution 

compared to the frequently used 32 to 128 lines.

TESTS WITH AN  
ELECTRIC CITY BUS

From May to September 2018, Bertrandt 
had the opportunity to use its Emil electric 
city bus from Regensburg in live operation 
as a research platform. The aim was to 
show the challenges for future autono-
mous driving in an urban environment 
and to collect the corresponding data. 
Since the beginning of the project, an 
interdisciplinary team has been working 

intensively on the topics of localization, 
data transfer, lidar image processing, and 
object recognition using machine learning.

After around 1800 test drives, the data 
pool amounts to 14 TB, which was col-
lected over 120 days while driving a total 
distance of 5800 km. Before the e-bus  
of the Italian company Rampini Carlo 
S. p. A. began recording data, additional 
sensorics were installed in the bus. These 
include essentially a Quanergy M8 lidar 
and a GNSS receiver with an integrated 
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Inertial Measuring Unit (IMU) from Hexa-
gon. A processor unit (Intel i7 kernel and 
Nvida GPU) was responsible for control
ling the sensors, recording the data, and 
in some cases transferring the data in  
real time via LTE to the backend (Micro-
soft Azure Cloud). The completely inde-
pendent system without connection to  
the vehicle bus system or the driver was 
powered by the 24-V vehicle electrical 
system. The sensor data were recorded 
and processed using the ROS software 
framework [1] in the “Kinetic Kame” 
version. FIGURE 1 shows the entire archi-
tecture of the experimental setup with 
built-in hardware.

CHOOSING THE SENSOR

A lidar system, when used in sensor 
fusion for autonomous driving, offers an 
interesting mixture of spatial resolution 
and depth information, and therefore 
supplements the more traditional sensors 
such as radar and camera. The lidar sen-
sor, which has a range of 150 m at 80 % 
reflectivity, made it possible to repeat-
edly record the surroundings that the 
bus drives through several times a day 
on its approximately 4 km long route 
through Regensburg’s historical city 
center. The result is a grayscale image 
(reflectivity) with eight lines and up to 
10,000 points per line as well as the cor-
responding depth information (distance).

As the bus itself was already very tall, 
the sensor was not mounted on the roof 
but on the front of the vehicle at a height 
of around 3 m. For that reason, a visibil-

ity of only 180° is usable and not the  
full 360°. On the basis of these data, two 
methods of object detection and classifi-
cation were examined. One of the chal-
lenges was the low vertical resolution 
compared to the frequently used 32 to 
128 lines that are provided by the signifi-
cantly more expensive reference sensors 
used in automotive applications.

OBJECT DETECTION VIA  
TWO ALGORITHMS

The main intention was to detect and 
classify relevant objects in the bus’s 
surroundings. The classes “Vehicle”  
and “Pedestrian” were considered.  
Due to the high variability of the data, 
approaches from machine learning were 
applied. Training required data which,  
in addition to the actual sensor data, also 
contain the desired result of the object 
detection process, so-called labels. These 
are usually given in the form of bound-
ing boxes which completely enclose the 
object. The Kitti 3-D object detection 
dataset was used as the source for the 
training data [2], FIGURE 2.

In order to measure the quality of  
the process, the labels generated by the 
respective algorithm were compared to 
manual reference annotations. If there  
is a sufficiently high agreement of the 
bounding boxes, the prediction is recog-
nized as true-positive; otherwise, the 
object is registered as an error. Processes 
in the Kitti environment are normally 
evaluated using the Mean Average Preci-
sion (MAP).
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FIGURE 1 Entire architecture of the experimental 
setup with built-in hardware (© Bertrandt)
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Two algorithms in a direct comparison 
were used in order to detect the objects. 
One approach is based on Yolo 2-D object 
detection [3]. The second approach 
implements and adapts the ideas from 
VoxelNet for the lidar sensor used [4].

The fundamental approach of the Yolo-
based algorithm is to generate a 2-D repre-
sentation from the 3-D point cloud and 
then to use an established approach from 
image processing to detect the desired 
objects in this representation. First of all, 
the frontal view was implemented. Follow-
ing the 2-D detection, the missing coordi-
nates from the underlying point cloud 
were determined in order to give a genuine 
3-D object. The advantage of this approach 
is that intermediate results, for example 
the 2-D projection or the 2-D objects, can 
easily be manually checked and, when 
selecting suitable neural networks, it was 
possible to make use of the already exten-
sively evaluated architectures from classi-
cal image processing as neural networks.

For the VoxelNet-based approach, an 
occupancy grid is generated from the 
point cloud. The grid divides the 3-D 
area around the sensor into cubes and, 
with the aid of neural networks, deter-
mines different properties or features  
for each cube (dimensions, for example 
0.4 × 0.2 × 0.2 m), such as the number 
of points in the cube or their typical dis-
tance from each other. This grid, com-
bined with the properties, forms the 
input data for a further neural network 
(Region Proposal Network), which is 
trained with typical contours and sur-

roundings. At the end of this processing, 
both the class of a detected object and its 
3-D bounding box are made available.

For both processes, the data for train-
ing and evaluation from Kitti were adapted 
to the sensor used. This includes, among 
others, the selection of the eight most 
similar beams from the 64 available as 
well as the masking of the objects in the 
environment not visible as a result and 
the correction of the sensor installation 
height, FIGURE 3. Therefore, due to the 
reduced information, a deterioration of 
the detection results can be expected 
compared to a process based on the com-
plete data.

At the end of the project, the two imple-
mented algorithms were compared with 
the best results in the official benchmark 
for the detection of vehicles in a bird’s  
eye view. The UberTAG-HDNet [5] of the 
University of Toronto, which uses addi-
tional training data in order to learn typi-
cal maps and therefore to enable better 
masking of the static environment, gener-
ates a MAP of 89 % for completely visible 
vehicles (Kitti Easy).

The Bertrandt innovation project, 
which had a duration of only six months, 
achieved an MAP of 59 % for the same 
vehicles using the VoxelNet approach 
with eight height layers. The alternative 
approach with Yolo still delivered a 
respectable 34 % MAP without deter-
mining the angle of rotation of the 
objects in the XY plane. This trend can 
also be observed in the task of pedes-
trian detection. The University of Water-

loo (AVOD-FPN [6]) achieved the best 
results so far for this task with Kitti data 
(lidar and camera): 59 % of the simple 
data were correctly classified. In the 
project presented, the VoxelNet approach 
achieved 41 % MAP with the data reduced 
to eight height layers, while Yolo achieves 
an accuracy of 19 % without estimating 
the angle of rotation.

FUSION OF LIDAR INFORMATION

With the aid of the data collected, object 
detection can be optimized even further. 
New approaches can be evaluated with-
out the need for recording new test 
drives. In particular, the time sequence 
of the lidar frames can be used to obtain 
a more accurate image of the surround-
ings and to check the plausibility of 
potentially detected objects or to reject 
them. The fusion of lidar information 
with other sensor data will also be nec-
essary for future automated driving.  

LOCALIZATION IN  
URBAN ENVIRONMENT

A further focus of the project was on 
localization. Satellite-based navigation 
systems such as with GPS or Galileo have 
a positioning accuracy of around 10 m 
without using correction data. In urban 
environments, streets with high buildings 
pose a problem, as it is not always possi-
ble to have a continuous clear view to  
the sky, with the result that there is an 
increase in typical positioning errors.  
To counteract this, the vehicle’s motion 
can be tracked with the aid of an IMU 
and this data can be used together with 
the GNSS position data. Unfortunately, 
even minor errors in the measured values 
result in a drift in the position, which 
means that this approach does not pro-
vide a long-term stable position.

By contrast, simultaneous localization 
and mapping integrate a second absolute 
source of information with the static 
environment in order to determine the 
position. These systems use sensor infor-
mation not only to determine the posi-
tion of the vehicle but also to generate  
a map of the surroundings, FIGURE 4.  
The basic idea is that changes in the 
distances from walls or corners are a 
sign of motion and are therefore an indi-
cation of a change in position. Various 
implementations, for example for mobile 
robots, are already in use.

Kitti training data

Cars are reliably recognized

Pedestrians nearby can be recognized

FIGURE 2 Examples for the lidar data in the Kitti benchmark: The reference labels are displayed in 
magenta, the automatically generated labels in turquoise (© Bertrandt)
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Several methods were evaluated 
during the project duration, but as yet 
these have not been capable of dealing 
with the relatively dynamic environ
ment of an inner-city area. Therefore,  
an image of the surroundings was gener-
ated by projecting the lidar impressions 
on the respective GNSS/IMU position 
and then aggregating them over a com-
plete test drive. This representation can 

then be further refined and made more 
precise over several test drives until an 
accurate map of the route has ultimately 
been generated.

CHALLENGE OF DATA TRANSFER

A further key point that became appar-
ent during the project was that the net-
work connection in Regensburg is basi-

cally stable, but reproducibly deterio
rates at the same places each time. In 
these situations, latencies of more than 
1000 ms were observed, while at the 
same time the usable data rate fell to 
below 4000 kbit/s, FIGURE 5. The reasons 
for this were, among other things, over-
loaded network cells at busy locations 
and narrow streets with tall buildings in 
Regensburg’s historic city center.
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FIGURE 3 Results for the detection of vehicles (a) and pedestrians (b): The degree of difficulty depends, among other things, on the occlusion and size of the 
objects; the reference algorithms work on all 64 beams; VoxelNet and Yolo use only eight beams (© Bertrandt)
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VEHICLES AS PRODUCERS OF DATA

If we take a look at the future of data 
transfer, a major advantage of (semi-)
autonomous vehicles will be the fact  
that they can share large amounts of 
data about their sensor impressions and 
planned maneuvers with other vehicles 
in the vicinity and with backend sys-
tems. Even today, vehicles are increas-
ingly becoming producers of data.

However, the current 4G network 
infrastructure is not powerful enough  
to transfer this data reliably for a large 
number of vehicles. For that reason, the 
focus is increasingly on the upcoming 
5G standard, which not only offers 
greater bandwidths but also the possibil-
ity to broadcast information. In addition 
to car-to-X connectivity, another applica-
tion case is the distribution of correction 
data for satellite-based positioning 
solutions.

The raw data acquired in the innova-
tion project were already collected and 
evaluated by internal project groups 
during ongoing operation with the  
aim of establishing greater expertise.  
In keeping with its Open Innovation 
approach, Bertrandt intends not only to 
share the findings with customers but 
also to further develop them with coop-
eration partners.
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FIGURE 5 Latency (top) and bandwidth (bottom) of the mobile connection during an exemplary trip through 
Regensburg; both values indicate that the capacity limit is almost reached (© Bertrandt)

Lidar beams: red = low, blue = high

Generated map (cubes): purple = low, red = high

FIGURE 4 Automatically generated representation of the vehicle environment in real time on a journey 
(therefore reduced resolution); in the background a satellite image for comparison purposes (© Bertrandt)
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